Generalizing determinization from automata to coalgebras
نویسندگان
چکیده
The powerset construction is a standard method for converting a nondeterministic automaton into a deterministic one recognizing the same language. In this paper, we lift the powerset construction from automata to the more general framework of coalgebras with structured state spaces. Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor F determines both the type of systems (F -coalgebras) and a notion of behavioural equivalence (∼F ) amongst them. Many types of transition systems and their equivalences can be captured by a functor F . For example, for deterministic automata the derived equivalence is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. We give several examples of applications of our generalized determinization construction, including partial Mealy machines, (structured) Moore automata, Rabin probabilistic automata, and, somewhat surprisingly, even pushdown automata. To further witness the generality of the approach we show how to characterize coalgebraically several equivalences which have been object of interest in the concurrency community, such as failure or ready semantics. 2012 ACM CCS: [Theory of computation]: Models of computation—Abstract machines & Formal languages and automata theory—Formalisms—Algebraic language theory & Semantics and reasoning— Program semantics—Categorical semantics.
منابع مشابه
A Coalgebraic Perspective on Minimization and Determinization
Coalgebra offers a unified theory of state based systems, including infinite streams, labelled transition systems and deterministic automata. In this paper, we use the coalgebraic view on systems to derive, in a uniform way, abstract procedures for checking behavioural equivalence in coalgebras, which perform (a combination of) minimization and determinization. First, we show that for coalgebra...
متن کاملLifting Adjunctions to Coalgebras to (Re)Discover Automata Constructions
It is a well-known fact that a nondeterministic automaton can be transformed into an equivalent deterministic automaton via the powerset construction. From a categorical perspective this construction is the right adjoint to the inclusion functor from the category of deterministic automata to the category of nondeterministic automata. This is in fact an adjunction between two categories of coalg...
متن کاملTrace Semantics via Determinization
This paper takes a fresh look at the topic of trace semantics in the theory of coalgebras. The first development of coalgebraic trace semantics used final coalgebras in Kleisli categories, stemming from an initial algebra in the underlying category. This approach requires some non-trivial assumptions, like dcpo enrichment, which do not always hold, even in cases where one can reasonably speak o...
متن کاملMultidimensional fuzzy finite tree automata
This paper introduces the notion of multidimensional fuzzy finite tree automata (MFFTA) and investigates its closure properties from the area of automata and language theory. MFFTA are a superclass of fuzzy tree automata whose behavior is generalized to adapt to multidimensional fuzzy sets. An MFFTA recognizes a multidimensional fuzzy tree language which is a regular tree language so that for e...
متن کاملNEW DIRECTION IN FUZZY TREE AUTOMATA
In this paper, our focus of attention is the proper propagationof fuzzy degrees in determinization of $Nondeterministic$ $Fuzzy$$Finite$ $Tree$ $Automata$ (NFFTA). Initially, two determinizationmethods are introduced which have some limitations (one inbehavior preserving and other in type of fuzzy operations). Inorder to eliminate these limitations and increasing theefficiency of FFTA, we defin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logical Methods in Computer Science
دوره 9 شماره
صفحات -
تاریخ انتشار 2012